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This nOle presents a study of measures on LO. I] annihilating slibspaces
E c C[O, 1] \Ii hich contain large Chebyshev subspaces. As an application, we
show that every such E is weakly close to a norm-dense subspace. r 1988 Academic

Press, ~lll:.

INTRODUCTION

In this note we deal with subspaces of C[O, 1] that contain Chebyshev
systems of arbitrary large dimension. Such subspaces we caB C-spaces. We
study the properties of functionals that annihilate C-spaces. These
functionals and their corresponding measures have very specific properties.
In fact, we have the following

Conjecure. Let J1 be a Borel measure annihilating a C-space. Then every
cluster point of supp J1 belongs to the intersection supp p. + n supp 11- .

There is a close connection between this conjecture and Newman's
problem [3]. Let 1> I' 1>2' 1>3' ... be a sequence of functions in CEO, 1] such
that (1) 1 , ••• , 1>n} span an n-dimensional Chebyshev subspace En for every n,
and let E be the union of all the En' n ~ 0, Then E is a C-space, Newman
conjectured that the rational functions with numerators and denominators
from E are a norm-dense subset of C[O, 1]. Using results from [2J we can
show that a positive answer to our conjecture would also solve Newman's
conjecture,

In this note, we present initial steps towards a possible solution of our
conjecture. As an application of our results we study the density of
C-spaces in CEO, 1]. It is well known that a C-space can be very small (in
the sense of Baire category). For example, the subspace generated by aE
polynomials of the form x 2

", n ~ 0, is a C-space which is a nowhere dense
subset of C[O, 1]. Nevertheless, we show that every C-space is arbitrary
close to a dense subspace of C[O, 1]. More precisely, we prove
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THEOREM. There exists a continuous family of bounded operators T~,

IX> 0, such that

(a) lim, -0 T,f = f for all f E CEO, 1].

(b) T~E is a C-space for all C-spaces E and alia> 0.

(c) For every C-space E and for every a>O the space T~E is norm­
dense in CEO, 1].

THE RESULTS

Let E" be an n + I-dimensional subspace of CEO, 1]. If every non-zero
e E E" has no more than n zeros, then E" is called a Chebyshev subspace.
We will use the symbol Z(e) to denote the number (cardinality, resp.) of
zeros of functions e E CEO, 1]. The following proposition is well known
(cf. [1]).

1. PROPOSITION. Let E" c CEO, 1] be an n + I-dimensional Chebyshev
subspace. Let 0= to ~ t[ < t z < ... < tm ~ tm + 1 = 1, m ~n. Then there exists
a function e E E" such that

(j=I, ...,m) and Z(e)=m

and such that (-I)i e is positive on [t i, t i + 1 ], O~i~m.

2. DEFINITION. A (not necessarily closed) subspace Ec CEO, 1] is
called a space with large Chebyshev subspaces (C-space) if for every N ~°
there exists n ~ N such that E contains an (n + I )-dimensional Chebyshev
subspace.

In particular, CEO, 1] is a C-space. Moreover, if A = {A/ j = 0, 1,2, ... } is
an infinite set of real numbers, then

is a C-space. If lim
J

_ ao Aj =oo and L,1/Aj <oo or if limj_aoAj=O and
L, Aj < 00, then E", is an example of a C-space that is not dense in CEO, 1].
Another classical example is span{I/(t-Aj ); j=O, 1,2, ... }, provided that
An [0,1] = 0.

We will need some extra terminology from measure theory.
Let vii [0, I] be the space of all regular Borel measures on [0, 1]. As

usual, we will identify dH[O, 1] with the dual space of CEO, 1]. For every
,u E .l/[O, 1] we write
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to denote the usual Hahn decomposition of /1 into pairwise orthogonal
positive measures. We also define

III = SUpp f1. + n SUpp f1. _ .

A measure f1. is called peaking if

f1.(/)= 11f1.llllfll

for some °1= f E C[O, 1]. It is well known that f1. is peaking if and only if
III = 0· If f1. is peaking and if f E C[O, 1] is chosen such that /1(/) =
II f1. II Ilfll, then clearly

f lsUPp)1+ = Ilfll, f!SUPPll_ = - Ilfll. (I}

3. DEFINITION. We will say that f1.EJlt[O, IJ changes its sign k times if
there exists a partition of the interval [0, 1]

0=tO«I<t2< ... <tk_1<lk=1

such that the restriction measures f1.i = f1.1(1,.I, + I) are alternatively positive and
negative.

4. Remarks. (i) If f1. is peaking, then the open intervals in Definition 3
can be replaced by the closed intervals [ti' t i+ 1].

(ii) If a measure f1. is given by a continuous function g, i.e., fl(A) =
JA g( t) dt for all measurable subsets A c [0, 1], then fl changes its sign n
times if and only if g changes its signum n times in the sense of continuous
functions.

(iii) Clearly not every measure changes its sign only finitely many
times. However, if f1. is peaking, then f1. changes its sign finitely many times.

(Indeed, if 1)1 = supp fl + n supp f1. _ is empty, then we may cover supp I +

by finitely many open intervals (Xi' Yi) 1~ i ~ n; we may assume that the
closed intervals [Xi' YtJ do not intersect supp f1. _ and are pairwise disjoint.
Relabel the Xi such that Xi < X i + l' Since the closed intervals are pairwise
disjoint, we obtain Yi < X i + l' Clearly, since now [Yi' X i + IJ n supp j1. + = 0,
the restriction of f1. to intervals of the form [Yi' X i + tJ yields negative
measures. Hence the partition °~ Xl < YI < -'2 < Y2 < '" < x" < Yn ~ 1 will
do the job.)

The last remark leads immediately to

5. PROPOSITION. If f1. does not change sign only finitely many times, then
I)1 is non-empty.

Using Proposition 1 we obtain
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6. PROPOSITION. LeT E" be an (n + 1)-dimensional Chebyshev system. Let
oof /1l.-E" (i.e., /1(e) = 0 for all e E E). If /1 changes sign finitely many times,
then it changes sign at least n + 2 times.

Proof Suppose that /1 changes sgn k times, where k:::::; n + 1. Let

be a corresponding partition. By Proposition 1 there exists e E E with
e(td=e(Tz)= ... =e(tk_d=O and Z(e)=k-l. Since for each l:::::;i:::::;k
the restriction of e to the open interval (t i _ 1, tJ is strictly positive, since
e( t i _ l) = e(tJ = 0 and since the restriction of /1 to (t i-I, tJ is either positive
or negative, we obtain that either /11[/,_1.•,]=0 or /l\[Ii_l,.,](e)ofO. Since
oof /l, there exists at least one i such that /ll[',-l,"] of O. Hence, if /lIllo, 'I) and
el(/Q"l) have always the same sign, then /l(e»O, otherwise /l(e) <0,
contradicting fl 1.- E. I

Proposition 6 provides us with the following generalization of the
Chebyshev theorem.

7. THEOREM. Let E be a closed subspace of CEO, 1] thaT contains an
(n + I)-dimensional Chebyshev subspace E". LeT f ¢ E and assume there
exisTs e E E that is a best approximaTion to f Then there exisT at least (n +2)
points ~o, ..., ~,,+ 1 such ThaT

(f - e)( ~i = A' ( -1 )illf - ell where ), = +1 or A= -1.

Proof Let e be a best approximation to f Then by the Hahn-Banach
theorem there exists /1 1.- E such that

fl(f -e)= IIfllllif -ell· (2)

Hence fl is a peaking measure and by Proposition 6 it has k ~ (n + 2)
changes of signum. Let 0 = to < T1 < ... < t k = 1 be the corresponding
partition of the unit interval. Choose

i = 0, ..., n + 1 < k.

Then by (1) and (2) we have found a collection (i of n + 2 points satisfying
the statement in the theorem. I

Actually the proof of the theorem says a little bit more. It describes the
set of all ~E [0, IJ such that (f -e)(O= ± III -ell. They include all the
points in supp /1. In particular it follows that if E consists of analytical
functions and if I is analytical, then g E [0, 1]: (f - e)( 0 = ± II I - ell} is
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finite, hence the measure J1 in formula (2) is a linear combination of finitely
many point evaluations.

We now turn our attention to C-spaces.

8. THEOREM. Let E be a C-space and let J1 -l E. Then J1 does not change
sign finitely many times. Therefore. III is non-empty. In partitcular, {I does
not peak.

Proof For a proof it is sufficient to show that J'1 does not change sign
finitely many times (cr. Proposition 5). Contrary to it, suppose that f1
changes sign N times. Then there exists n ~ N such that E contains an
(n + 1)-dimensional Chebyshev subspace Etl" Since f-1 1.- E, {l changes sign at
least n + 2 > N times by Proposition 6, a contradiction. I

It is interesting to mention that while the finite dimensional Chebyshev
subspaces are ideally suited for the existence and uniqueness of best
approximations, the C-spaces are worst possible.

9. COROllARY. Let E be a C-space, Then no f if; E has a best
approximation from E.

Proof Suppose that some f if; E has a best approximation e E E. Then
by the Hahn-Banach theorem there exists J1 -l E such that

J1(f -e)= II{dlllf -ell·

Therefore J1 is peaking and thus has finitely many changes of sign by (4.iii),
contradicting Theorem 8. I

Our next application shows that the C-spaces are in some sense close to
being dense in C[O, 1l

10. THEOREM. Let E be a C-space. Let

T: C[O, 1J -> C[O, 1]

he a linear operator or the form

T(f)(t) = Ck(s, t) f(s) ds,
'0

where k(s, t) satisfies the following conditions:

(a) k(s, t) is analytic on [0, IJ x [0, II

(b) span {k(s, -): s E [0, 1]} is dense in C[O, 1J.

Then T(E) is dense in C[O, 1l
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Proof Let fl1. T(E) be a measure annihilating the range of T, i.e., for
every element eEE we have fl(T(e» =0. Then T*(fl) 1. E. Using Fubini's
theorem, for the measure T*(fl) we have

T*(fl)(f) = fl(T(f»

= ( [( k(s, t) f(s) dS] dfl(t)

=J: U: k(s, t) f(s) dfl(t)] ds

= J~l f(s) [fa' k(s, t) dfl(t)] ds.

This shows that the measure T* is given by the analytic function

g(s) = rk(s, t) dfl(t)·
o

On the other hand, T*(fl) 1. E and therefore by Theorem 8, T*(fl) does
not change sign finitely many times. Hence g(s) changes sign infinitely
many times on [0, 1]. It follows that g(s) has infinitely many zeros on the
compact interval [0, 1]. Hence the analyticity of g(s) implies g(s) = 0 for
all s E [0, 1]. So we have

and thus

rk(s, t) dfl(t) = 0
o

for all s E [0, 1]

fl1. span{k(s, -): SE [0, I]}.

Now implies fl = O. I

This theorem shows that although the closed C-spaces can be small
(nowhere dense, for instance), they are weakly close to dense subspaces.
Indeed, pick k r(, t) = gr(t) 1/~ exp( - (s - £)2/r l]), where g" 0 < r ~ 1, is
a family of analytic functions such that

lim g.(t) = {2
r ~O 1

if t=O or t= 1,

if O<t<1.

Then the operator Tt given by k t satisfies the conditions of Theorem 10.
Hence for all r > 0 the image of E under T r is dense in C[O, 1]. Moreover,
T r converges pointwise to the identity operator as r tends to zero.
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